organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[2-(4-Acetylphenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione

Carlos Bustos,^a Daniela Barría,^a Luis Alvarez-Thon,^{b*} Juan-Guillermo Cárcamo^c and Maria Teresa Garland^d

^aInstituto de Ciencias Químicas, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teia, Casilla 567, Valdivia, Chile, ^bDepartamento de Ciencias Físicas, Universidad Andres Bello, Avda. República 220, Santiago de Chile, Chile, ^cInstituto de Ciencias Moleculares y Microbiología, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, and ^dLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago de Chile, Chile Correspondence e-mail: lalvarez@unab.cl

Received 8 July 2011; accepted 9 July 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.117; data-to-parameter ratio = 15.0.

In the title compound, $C_{23}H_{18}N_2O_3$, the interplanar angle between the benzoyl units is $80.51 (6)^{\circ}$ while the dihedral angles between the hydrazinvlidene and benzovl groups are 43.43 (6) and 54.16 (6)°. In the crystal, a strong resonanceassisted intramolecular N-H···O hydrogen bond is observed. The molecules form an inversion dimer via a pair of weak C-H···O hydrogen bonds and a π - π interaction [centroidcentroid distance of 3.5719 (10) Å]. These dimers are linked *via* weak $C-H \cdots O$ contacts, forming chains along the *b* axis.

Related literature

For details of the synthesis, see: Yao (1964). For resonanceassisted hydrogen bonds and related structures see: Bertolasi et al. (1993); Bustos, Alvarez-Thon, Barría, Cárcamo & Garland (2011); Bustos, Alvarez-Thon, Barría, Garland & Sánchez (2011); Bustos, Alvarez-Thon, Cárcamo, Garland & Sánchez (2011); Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez (2011); Gilli et al. (1993).

Experimental

Crystal data

$C_{23}H_{18}N_2O_3$	V = 1891.6 (4) Å ³
$M_r = 370.39$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 12.6026 (15) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 11.0138 (13) Å	$T = 297 { m K}$
c = 14.9701 (18) Å	$0.53 \times 0.23 \times 0.20 \text{ mm}$
$\beta = 114.447 \ (2)^{\circ}$	

Data collection

Bruker D8 Discover with SMART
CCD area-detector
diffractometer
14867 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.117$	independent and constrained
S = 0.97	refinement
3869 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

3869 independent reflections

 $R_{\rm int} = 0.047$

2580 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1\cdots O2$	0.888 (15)	1.965 (15)	2.6496 (16)	132.8 (15)
$C15-H15\cdots O3^{i}$	0.93	2.38	3.2503 (19)	156
$C21-H21\cdots O1^{ii}$	0.93	2.67	3.2983 (18)	125

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 2, -y, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

The authors thank the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT; grant Nos. 11100446 and 1080269) and the Universidad Andrés Bello (grant No. DI-06-10-R) for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2443).

References

- Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223-2228.
- Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bustos, C., Alvarez-Thon, L., Barría, D., Cárcamo, J.-G. & Garland, M. T. (2011). Acta Cryst. E67, o1830-o1831.
- Bustos, C., Alvarez-Thon, L., Barría, D., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1587.
- Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, 01426.
- Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Ibañez, A. & Sánchez, C. (2011). Acta Cryst. E67, 01450-01451.
- Gilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564-576.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Yao, H. C. (1964). J. Org. Chem. 29, 2959–2962.

Acta Cryst. (2011). E67, o2048-o2049 [doi:10.1107/S1600536811027590]

2-[2-(4-Acetylphenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione

C. Bustos, D. Barría, L. Alvarez-Thon, J.-G. Cárcamo and M. T. Garland

Comment

β-diketones are known to form strong intramolecular O—H···O hydrogen bonds where the decrease of the O···O contact distance (up to 2.40 Å) is correlated with the increased π-delocalization of the O—C=C—C=O heteroconjugated system; the phenomenon has been interpreted by the Resonance Assisted Hydrogen Bond (RAHB) model (Gilli *et al.*, 1993). Besides, this concept has been applied to other heterodienic systems such as enaminones and ketohydrazones (Bertolasi *et al.*, 1993). On the other hand, in previous works we have reported the crystalline structures of three β-diketohydrazones of the type 2-(2-(*R*-phenyl)hydrazinylidene)-1,3-diphenylpropane-1,3-dione (*R* = 4-Br, 4-NO₂, 3-Cl) (Bustos, Alvarez-Thon, Cárcamo, Garland and Sánchez, 2011; Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez, 2011; Bustos, Alvarez-Thon, Barría, Garland & Sánchez, 2011) and a second polymorph of 2-(2-(4-methoxyphenyl)hydrazinylidene)-1,3-diphenylpropane-1,3-dione (Bustos, Alvarez-Thon, Barría, Cárcamo & Garland, 2011), containing this hydrogen-bonded core. Now, we present the title compound prepared using similar methodology (Yao, 1964).

The molecular structure of the title compound, (I), is shown in Fig. 1. In (I), the interplanar angle between the benzoyl units is 80.51 (6)°. The corresponding angles between the hydrazinylidene and the benzoyl groups are 43.43 (6) and 54.16 (6)°, respectively. In (I), a strong resonance-assisted intramolecular hydrogen bond N2—H1···O2 is observed (Fig. 1, Table 1). In the crystal, the entire supramolecular structure is constructed by weak intermolecular interactions. The molecules form an inversion dimer *via* a pair of weak C15—H15···O3ⁱ hydrogen bonds and an inter-ring π - π interaction with a centroid-centroid distance of 3.5719 (10) Å, (Fig. 2, Table 1), and these dimers are linked *via* weak C21—H21···O1ⁱⁱ contacts to form chains along the *b* axis (Table 1, Fig. 3) [symmetry codes: (i) -*x* + 2, -*y* + 1, -*z*; (ii) -*x* + 2, -*y*, -*z*].

Experimental

Chemicals: 1,3-diphenylpropane-1,3-dione, 4-aminoacetophenone and sodium nitrite were procured from Sigma-Aldrich and sodium hydroxide, hydrochloric acid, sodium acetate and solvents from Merck. These chemicals were used without previous purification.

Procedure: In a 500 ml beaker flask were dissolved 2.29 g (0.01 mole) of 1,3-diphenylpropane-1,3-dione (98%) in 100 ml of an ethanol solution containing 0.4 g (0.01 mole) of sodium hydroxide. This solution was then buffered by adding 4.80 g of sodium acetate trihydrate. The resulting β -diketonate solution was diluted with water to a volume of about 220 ml, and stirred and cooled at -5 °C. On the other hand, in another 50 ml beaker flask, a diazonium ion solution was prepared adding 1.36 g (0.01 mole) of 4-aminoacetophenone (99%) in 8 ml of hydrochloric acid (5 mol/*L*), cooling at -5 °C, and adding dropwise a saturated aqueous solution containing 0.69 g (0.01 mole) of sodium nitrite. The diazonium salt solution was then added dropwise with vigorous stirring into the buffered β -diketonate solution. During the addition an orange solid was observed. This precipitate was filtered by suction and washed with an abundant quantity of water. Yield: 95% of crude product. Single crystals suitable for X-ray studies were obtained by recrystallization from a concentrated solution of the compound in ethanol.

Refinement

All hydrogen atoms were found in difference Fourier maps. The hydrogen attached to N2 was refined freely against the diffraction data, but all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(\text{aromatic C})$ or $U_{iso}(H) = 1.5U_{eq}(\text{aliphatic C})$.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The strong intramolecular hydrogen bond (N2–H1…O2) is depicted with a dashed line.

Fig. 2. Part of the crystal packing showing the formation of an inversion-related dimer *via* C15—H15····O3ⁱ weak contacts (dashed lines) and a π - π stacking interaction (solid line) [symmetry code: (i) -x + 2, -y + 1, -z].

Fig. 3. Part of the crystal packing showing the formation of a chain along the *b* axis, by linking dimers (see Fig. 2) through weak C21—H21···O1ⁱⁱ contacts (dashed lines) [symmetry code: (ii) -x + 2, -y, -z].

2-[2-(4-Acetylphenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione

Crystal data

$C_{23}H_{18}N_2O_3$	F(000) = 776
$M_r = 370.39$	$D_{\rm x} = 1.301 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 999 reflections
a = 12.6026 (15) Å	$\theta = 1.8 - 26.4^{\circ}$
b = 11.0138 (13) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 14.9701 (18) Å	<i>T</i> = 297 K
$\beta = 114.447 \ (2)^{\circ}$	Polyhedron, yellow
$V = 1891.6 (4) \text{ Å}^3$	$0.53 \times 0.23 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker D8 Discover with SMART CCD area-detect-	
or	2580 reflections with $I > 2\sigma(I)$
diffractometer	
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.047$
graphite	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
ϕ and ω scans	$h = -15 \rightarrow 15$
14867 measured reflections	$k = -13 \rightarrow 13$
3869 independent reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.117$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.97	$w = 1/[\sigma^2(F_o^2) + (0.0642P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
3869 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
258 parameters	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.86013 (11)	-0.08254 (9)	0.12281 (8)	0.0874 (5)
O2	0.86709 (9)	0.03801 (9)	-0.11984 (7)	0.0738 (4)
O3	1.32598 (10)	0.65485 (10)	0.01670 (8)	0.0856 (5)
N1	0.94625 (10)	0.17881 (9)	0.05722 (8)	0.0550 (4)
N2	0.98248 (10)	0.22190 (10)	-0.00751 (9)	0.0566 (4)
C1	0.71117 (12)	-0.04300 (12)	-0.09060 (10)	0.0568 (5)
C2	0.69701 (13)	-0.15056 (13)	-0.14206 (10)	0.0657 (5)

C3	0.59340 (17)	-0.21286 (15)	-0.17400 (12)	0.0821 (6)
C4	0.50186 (16)	-0.16661 (18)	-0.15818 (14)	0.0901 (7)
C5	0.51404 (15)	-0.05861 (18)	-0.10926 (13)	0.0870 (7)
C6	0.61877 (13)	0.00324 (14)	-0.07386 (11)	0.0712 (6)
C7	0.82231 (12)	0.02578 (12)	-0.06118 (10)	0.0566 (5)
C8	0.87475 (11)	0.08622 (12)	0.03603 (10)	0.0535 (4)
С9	0.86337 (12)	0.02835 (13)	0.12137 (10)	0.0598 (5)
C10	0.86295 (11)	0.10100 (12)	0.20482 (10)	0.0555 (5)
C11	0.89533 (12)	0.04458 (14)	0.29535 (11)	0.0667 (5)
C12	0.89283 (14)	0.10804 (18)	0.37354 (12)	0.0792 (7)
C13	0.85639 (15)	0.22591 (18)	0.36290 (13)	0.0833 (7)
C14	0.82327 (14)	0.28230 (16)	0.27368 (13)	0.0787 (6)
C15	0.82714 (12)	0.22093 (13)	0.19482 (11)	0.0635 (5)
C16	1.05800 (11)	0.32173 (11)	0.01612 (10)	0.0505 (4)
C17	1.08787 (12)	0.38540 (12)	0.10315 (10)	0.0561 (5)
C18	1.16533 (12)	0.48066 (12)	0.12415 (10)	0.0569 (5)
C19	1.21201 (11)	0.51695 (11)	0.05924 (10)	0.0525 (4)
C20	1.17882 (12)	0.45310 (13)	-0.02859 (10)	0.0589 (5)
C21	1.10363 (12)	0.35601 (12)	-0.05004 (10)	0.0575 (5)
C22	1.29307 (12)	0.62111 (13)	0.07860 (11)	0.0612 (5)
C23	1.33418 (14)	0.68561 (13)	0.17546 (12)	0.0749 (6)
H1	0.9663 (13)	0.1801 (13)	-0.0623 (11)	0.075 (5)*
H2	0.75800	-0.18090	-0.15510	0.0790*
H3	0.58550	-0.28660	-0.20640	0.0990*
H4	0.43150	-0.20840	-0.18060	0.1080*
Н5	0.45110	-0.02670	-0.09980	0.1040*
H6	0.62720	0.07520	-0.03910	0.0850*
H11	0.91870	-0.03630	0.30310	0.0800*
H12	0.91620	0.07020	0.43430	0.0950*
H13	0.85400	0.26790	0.41590	0.1000*
H14	0.79800	0.36250	0.26640	0.0940*
H15	0.80570	0.26020	0.13480	0.0760*
H17	1.05590	0.36400	0.14690	0.0670*
H18	1.18690	0.52170	0.18340	0.0680*
H20	1.20810	0.47660	-0.07360	0.0710*
H21	1.08350	0.31360	-0.10850	0.0690*
H23A	1.39270	0.74400	0.18000	0.1120*
H23B	1.36650	0.62770	0.22770	0.1120*
H23C	1.26960	0.72640	0.18060	0.1120*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.1300 (10)	0.0525 (6)	0.0877 (8)	-0.0137 (6)	0.0532 (8)	-0.0034 (6)
O2	0.0706 (7)	0.0888 (8)	0.0710 (7)	-0.0153 (6)	0.0383 (6)	-0.0177 (5)
O3	0.0768 (8)	0.1003 (9)	0.0750 (7)	-0.0239 (6)	0.0268 (6)	0.0133 (6)
N1	0.0558 (7)	0.0521 (7)	0.0599 (7)	0.0007 (5)	0.0269 (6)	0.0023 (5)
N2	0.0609 (7)	0.0553 (7)	0.0565 (7)	-0.0054 (6)	0.0272 (6)	-0.0033 (6)

C1	0.0557 (8)	0.0551 (8)	0.0575 (8)	-0.0020 (6)	0.0213 (7)	-0.0008 (6)
C2	0.0651 (10)	0.0603 (9)	0.0624 (9)	0.0029 (7)	0.0171 (7)	-0.0030(7)
C3	0.0845 (12)	0.0659 (10)	0.0779 (11)	-0.0140 (9)	0.0155 (9)	-0.0068 (8)
C4	0.0678 (12)	0.0955 (13)	0.0937 (13)	-0.0240 (10)	0.0202 (10)	-0.0023 (11)
C5	0.0634 (10)	0.1010 (13)	0.1007 (13)	-0.0049 (10)	0.0382 (10)	0.0007 (11)
C6	0.0660 (10)	0.0693 (9)	0.0839 (11)	-0.0041 (8)	0.0367 (9)	-0.0079 (8)
C7	0.0568 (8)	0.0532 (8)	0.0631 (9)	0.0026 (6)	0.0281 (7)	-0.0019 (6)
C8	0.0543 (8)	0.0482 (7)	0.0596 (8)	-0.0012 (6)	0.0251 (7)	-0.0032 (6)
С9	0.0611 (9)	0.0534 (9)	0.0659 (9)	-0.0073 (7)	0.0272 (7)	-0.0019 (7)
C10	0.0502 (8)	0.0592 (8)	0.0576 (8)	-0.0064 (6)	0.0229 (7)	-0.0008 (7)
C11	0.0641 (9)	0.0706 (9)	0.0678 (10)	-0.0048 (7)	0.0296 (8)	0.0065 (8)
C12	0.0730 (11)	0.1068 (14)	0.0602 (10)	-0.0058 (10)	0.0300 (9)	0.0045 (9)
C13	0.0783 (11)	0.1076 (14)	0.0682 (11)	-0.0035 (10)	0.0346 (9)	-0.0178 (10)
C14	0.0774 (11)	0.0805 (11)	0.0792 (11)	0.0091 (9)	0.0333 (9)	-0.0110 (9)
C15	0.0605 (9)	0.0684 (9)	0.0604 (9)	0.0038 (7)	0.0239 (7)	-0.0005 (7)
C16	0.0480 (7)	0.0482 (7)	0.0546 (8)	0.0045 (6)	0.0204 (6)	0.0029 (6)
C17	0.0609 (9)	0.0552 (8)	0.0573 (8)	0.0005 (7)	0.0295 (7)	0.0027 (6)
C18	0.0607 (9)	0.0543 (8)	0.0536 (8)	0.0006 (7)	0.0216 (7)	-0.0002 (6)
C19	0.0456 (7)	0.0527 (8)	0.0564 (8)	0.0050 (6)	0.0183 (6)	0.0061 (6)
C20	0.0549 (8)	0.0662 (9)	0.0621 (9)	0.0014 (7)	0.0306 (7)	0.0062 (7)
C21	0.0605 (9)	0.0604 (8)	0.0545 (8)	0.0001 (7)	0.0267 (7)	-0.0036 (7)
C22	0.0492 (8)	0.0612 (9)	0.0665 (9)	0.0032 (6)	0.0173 (7)	0.0137 (7)
C23	0.0701 (10)	0.0671 (9)	0.0803 (11)	-0.0129 (8)	0.0239 (9)	-0.0044 (8)

Geometric parameters (Å, °)

O1—C9	1.2225 (17)	C16—C21	1.388 (2)
O2—C7	1.2321 (19)	C17—C18	1.378 (2)
O3—C22	1.219 (2)	C18—C19	1.387 (2)
N1—N2	1.3187 (18)	C19—C20	1.3939 (19)
N1—C8	1.3099 (18)	C19—C22	1.483 (2)
N2—C16	1.4004 (18)	C20-C21	1.376 (2)
N2—H1	0.888 (15)	C22—C23	1.501 (2)
C1—C2	1.384 (2)	С2—Н2	0.9300
C1—C6	1.386 (2)	С3—Н3	0.9300
C1—C7	1.490 (2)	С4—Н4	0.9300
C2—C3	1.374 (3)	С5—Н5	0.9300
C3—C4	1.368 (3)	С6—Н6	0.9300
C4—C5	1.372 (3)	C11—H11	0.9300
C5—C6	1.381 (3)	C12—H12	0.9300
C7—C8	1.4838 (19)	С13—Н13	0.9300
C8—C9	1.487 (2)	C14—H14	0.9300
C9—C10	1.485 (2)	C15—H15	0.9300
C10—C15	1.384 (2)	C17—H17	0.9300
C10-C11	1.390 (2)	C18—H18	0.9300
C11—C12	1.375 (2)	С20—Н20	0.9300
C12—C13	1.364 (3)	C21—H21	0.9300
C13—C14	1.372 (3)	C23—H23A	0.9600
C14—C15	1.379 (2)	С23—Н23В	0.9600

C16—C17	1.3874 (19)	С23—Н23С	0.9600
01···C1	2.9927 (18)	С8…Н6	2.8500
O1…C6	3.377 (2)	C8…H15	2.7700
O1···C21 ⁱ	3.2983 (18)	С9…Н6	3.0000
O2···C8 ⁱ	3.2639 (19)	C11···H14 ^{vii}	2.9900
O2…N1	2.8700 (15)	C12···H20 ^{viii}	2.9100
O2…N2	2.6496 (16)	C14…H4 ^{vi}	3.0300
O2…N1 ⁱ	3.2078 (16)	C16…H2 ⁱ	2.8500
O3···C15 ⁱⁱ	3.2503 (19)	C17····H2 ⁱ	2.8600
O3···C12 ⁱⁱⁱ	3.272 (2)	C18…H23C	2.9700
O1…H11	2.5400	C18…H23B	2.8600
O1…H21 ⁱ	2.6700	C23…H18	2.6300
O1…H1 ⁱ	2.898 (17)	C23····H2 ^{ix}	3.0600
O2…H2	2.7200	H1…O2	1.965 (15)
O2···H23B ^{iv}	2.9200	H1…C7	2.491 (16)
O2…H1	1.965 (15)	H1…H21	2.3800
O3…H20	2.5000	H1…O1 ⁱ	2.898 (17)
O3…H15 ⁱⁱ	2.3800	H2…O2	2.7200
N1…O2	2.8700 (15)	H2…C16 ⁱ	2.8500
N1…C15	3.045 (2)	H2…C17 ⁱ	2.8600
N1···O2 ⁱ	3.2078 (16)	H2····C23 ^{iv}	3.0600
N2 02	26406(16)		2 5700
N202	2.0490 (10)	H2···H23C ^{IV}	2.3700
N2…02 N1…H17	2.5200	H2…H23C ^{iv} H4…C14 ^{vi}	2.3700 3.0300
N2····02 N1···H17 N1···H15	2.5200 2.6400	H2…H23C ^{iv} H4…C14 ^{vi} H5…C6 ^{vi}	2.3700 3.0300 3.0800
N2···O2 N1···H17 N1···H15 C1···O1	2.5200 2.6400 2.9927 (18)	H2…H23C ¹ H4…C14 ^{vi} H5…C6 ^{vi} H6…C8	2.3700 3.0300 3.0800 2.8500
N2···O2 N1···H17 N1···H15 C1···O1 C2···C16 ⁱ	2.5200 2.6400 2.9927 (18) 3.439 (2)	H2…H23C ^{iv} H4…C14 ^{vi} H5…C6 ^{vi} H6…C8 H6…C9	2.3700 3.0300 2.8500 3.0000
N2···O2 N1···H17 N1···H15 C1···O1 C2···C16 ⁱ C6···O1	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.377 (2)	H2…H23C ^{iv} H4…C14 ^{vi} H5…C6 ^{vi} H6…C8 H6…C9 H11…O1	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400
N2···O2 N1···H17 N1···H15 C1···O1 C2···C16 ⁱ C6···C9	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.377 (2) 3.266 (2)	H2H23C ^{iv} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^x	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900
N2···O2 N1···H17 N1···H15 C1···O1 C2···C16 ⁱ C6···C9 C8···O2 ⁱ	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.377 (2) 3.266 (2) 3.2639 (19)	H2H23C ^{IV} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^{x} H15N1	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400
N2···O2 N1···H17 N1···H15 C1···O1 C2···C16 ⁱ C6···C9 C8···O2 ⁱ C9···C6	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.377 (2) 3.266 (2) 3.2639 (19) 3.266 (2)	H2H23C ^{IV} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^{x} H15N1 H15C8	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700
N2 02 N1H17 N1H15 C1 01 C2 $C16^{i}$ C6 $C9$ C8 02^{i} C9 $C6$ C12 03^{v}	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.377 (2) 3.266 (2) 3.2639 (19) 3.266 (2) 3.272 (2)	H2H23C ^{IV} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^{x} H15N1 H15C8 H15C8 H15O3 ^{ii}	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800
N2 02 N1 $H17$ N1 $H15$ C1 01 C2 $C16^{i}$ C6 01 C6 $C9$ C8 02^{i} C9 $C6$ C12 03^{v} C15 03^{ii}	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.377 (2) 3.266 (2) 3.2639 (19) 3.266 (2) 3.272 (2) 3.2503 (19)	H2H23C ^{iv} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^x H15N1 H15C8 H15O3 ⁱⁱ H17N1	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200
N2 02 N1H17 N1H15 C1 01 C2 $C16^{i}$ C6 01 C6 $C9$ C8 02^{i} C9 $C6$ C12 03^{v} C15 03^{ii} C15 $N1$	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2)	H2H23C ^{IV} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^{x} H15N1 H15C8 H15O3 ^{ii} H17N1 H18C23	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300
N202 N1H17 N1H15 C101 $C2C16^{i}$ C601 C6C9 $C802^{i}$ C9C6 $C1203^{v}$ $C1503^{ii}$ C15N1 $C16C19^{ii}$	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.2639 (19) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2)	H2H23C ^{IV} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^{x} H15N1 H15C8 H15O3 ^{ii} H17N1 H18C23 H18H23B	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.3800
N202 N1H17 N1H15 C101 C2C16 ⁱ C601 C6C9 C802 ⁱ C9C6 C12O3 ^v C15O3 ⁱⁱ C15N1 C16C19 ⁱⁱ C16C2 ⁱ	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2) 3.439 (2)	H2H23C ^{IV} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^{x} H15N1 H15C8 H15O3 ^{ii} H17N1 H18C23 H18H23B H18H23C	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.3800 2.4900
N202 N1H17 N1H15 C101 C2C16 ⁱ C601 C6C9 C802 ⁱ C9C6 C1203 ^v C1503 ⁱⁱ C15N1 C16C19 ⁱⁱ C16C2 ⁱ C16C2 ⁱ	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.2639 (19) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2) 3.439 (2)	$H2 \cdots H23C^{iv}$ $H4 \cdots C14^{vi}$ $H5 \cdots C6^{vi}$ $H6 \cdots C8$ $H6 \cdots C9$ $H11 \cdots O1$ $H14 \cdots C11^{x}$ $H15 \cdots N1$ $H15 \cdots C8$ $H15 \cdots C11^{x}$ $H15 \cdots C11^{x}$ $H15 \cdots N1$ $H15 \cdots C3^{ii}$ $H17 \cdots N1$ $H18 \cdots C23$ $H18 \cdots H23B$ $H18 \cdots C2^{ix}$	2.3700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.6300 2.3800 2.4900 2.9300
N202 N1H17 N1H15 C101 C2C16 ⁱ C601 C6C9 C802 ⁱ C9C6 C1203 ^v C1503 ⁱⁱ C15N1 C16C19 ⁱⁱ C16C2 ⁱ C16C2 ⁱ C17C20 ⁱⁱ	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2) 3.439 (2) 3.439 (2) 3.550 (2)	H2H23C ^{IV} H4C14 ^{vi} H5C6 ^{vi} H6C8 H6C9 H11O1 H14C11 ^{x} H15N1 H15C8 H15O3 ^{ii} H17N1 H18C23 H18H23B H18H23C H18C2 ^{ix} H20O3	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.3800 2.4900 2.9300 2.5000
N2 02 N1H17 N1H15 C1 01 C2 $C16^{i}$ C6 01 C6 $C9$ C8 02^{i} C9 $C6$ C12 03^{v} C15 03^{ii} C15 $N1$ C16 $C19^{ii}$ C16 $C19^{ii}$ C16 $C2^{i}$ C16 $C18^{ii}$ C17 $C20^{ii}$ C18 $C16^{ii}$	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.2639 (19) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2) 3.439 (2) 3.489 (2) 3.489 (2)	$H2 \cdots H23C^{iv}$ $H4 \cdots C14^{vi}$ $H5 \cdots C6^{vi}$ $H6 \cdots C8$ $H6 \cdots C9$ $H11 \cdots O1$ $H14 \cdots C11^{x}$ $H15 \cdots N1$ $H15 \cdots C8$ $H15 \cdots C3^{ii}$ $H17 \cdots N1$ $H18 \cdots C23$ $H18 \cdots H23B$ $H18 \cdots C2^{ix}$ $H20 \cdots O3$ $H20 \cdots C12^{xi}$	2.5700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.3800 2.4900 2.9300 2.5000 2.5000
N202 N1H17 N1H15 C101 C2C16 ⁱ C601 C6C9 C802 ⁱ C9C6 C1203 ^v C1503 ⁱⁱ C15N1 C16C19 ⁱⁱ C16C2 ⁱ C16C2 ⁱ C16C18 ⁱⁱ C17C20 ⁱⁱ C18C16 ⁱⁱ C18C16 ⁱⁱ C18C16 ⁱⁱ	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2) 3.439 (2) 3.439 (2) 3.489 (2) 3.489 (2) 3.550 (2) 3.584 (2)	$H2 \cdots H23C^{iv}$ $H4 \cdots C14^{vi}$ $H5 \cdots C6^{vi}$ $H6 \cdots C9$ $H11 \cdots O1$ $H14 \cdots C11^{x}$ $H15 \cdots N1$ $H15 \cdots C8$ $H15 \cdots C3^{ii}$ $H15 \cdots C3^{ii}$ $H17 \cdots N1$ $H18 \cdots C23$ $H18 \cdots H23B$ $H18 \cdots C2^{ix}$ $H20 \cdots O3$ $H20 \cdots C12^{xi}$ $H21 \cdots H1$	2.3700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.4900 2.9300 2.9300 2.5000 2.9100 2.3800
N202 N1H17 N1H15 C101 C2C16 ⁱ C601 C6C9 C802 ⁱ C9C6 C1203 ^v C1503 ⁱⁱ C15N1 C16C19 ⁱⁱ C16C2 ⁱ C16C2 ⁱ C16C2 ⁱⁱ C17C20 ⁱⁱ C18C16 ⁱⁱ C18C16 ⁱⁱ C18C16 ⁱⁱ C19C16 ⁱⁱ	2.5496 (16) 2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.2639 (19) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2) 3.439 (2) 3.550 (2) 3.584 (2) 3.582 (2)	$H2 \cdots H23C^{iv}$ $H4 \cdots C14^{vi}$ $H5 \cdots C6^{vi}$ $H6 \cdots C8$ $H6 \cdots C9$ $H11 \cdots O1$ $H14 \cdots C11^{x}$ $H15 \cdots N1$ $H15 \cdots C8$ $H15 \cdots C8$ $H15 \cdots C8$ $H15 \cdots C3^{ii}$ $H17 \cdots N1$ $H18 \cdots C23$ $H18 \cdots H23B$ $H18 \cdots H23C$ $H18 \cdots C2^{ix}$ $H20 \cdots O3$ $H20 \cdots C12^{xi}$ $H21 \cdots H1$	2.3700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.3800 2.4900 2.9300 2.5000 2.5000 2.5000 2.5000 2.3800 2.3800 2.3800
N202 N1H17 N1H15 C101 C2C16 ⁱ C601 C6C9 C802 ⁱ C9C6 C1203 ^v C1503 ⁱⁱ C15N1 C16C19 ⁱⁱ C16C2 ⁱ C16C2 ⁱ C16C2 ⁱⁱ C17C20 ⁱⁱⁱ C18C16 ⁱⁱⁱ C18C16 ⁱⁱⁱ C18C16 ⁱⁱⁱ C19C16 ⁱⁱⁱ C19C16 ⁱⁱⁱ C19C16 ⁱⁱⁱ	2.5200 2.6400 2.9927 (18) 3.439 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.266 (2) 3.272 (2) 3.2503 (19) 3.045 (2) 3.582 (2) 3.439 (2) 3.439 (2) 3.550 (2) 3.584 (2) 3.582 (2) 3.550 (2)	$H2 \cdots H23C^{iv}$ $H4 \cdots C14^{vi}$ $H5 \cdots C6^{vi}$ $H6 \cdots C9$ $H11 \cdots O1$ $H14 \cdots C11^x$ $H15 \cdots N1$ $H15 \cdots C8$ $H15 \cdots C3^{ii}$ $H15 \cdots C3^{ii}$ $H17 \cdots N1$ $H18 \cdots C23$ $H18 \cdots H23B$ $H18 \cdots C2^{ix}$ $H20 \cdots O3$ $H20 \cdots C12^{xi}$ $H21 \cdots H1$ $H21 \cdots O1^i$ $H23B \cdots C18$	2.3700 3.0300 3.0800 2.8500 3.0000 2.5400 2.9900 2.6400 2.7700 2.3800 2.5200 2.6300 2.4900 2.9300 2.9300 2.5000 2.9100 2.3800 2.6700 2.8600

C21···C18 ⁱⁱ	3.584 (2)	H23B····O2 ^{ix}	2.9200
C2…H18 ^{iv}	2.9300	H23C…C18	2.9700
C6…H5 ^{vi}	3.0800	H23C…H18	2.4900
C7…H1	2.491 (16)	H23C…H2 ^{ix}	2.5700
N2—N1—C8	120.99 (11)	C16—C21—C20	119.59 (13)
N1—N2—C16	120.18 (11)	C19—C22—C23	119.30 (13)
N1—N2—H1	118.4 (10)	O3—C22—C19	120.71 (13)
C16—N2—H1	120.9 (11)	O3—C22—C23	119.99 (14)
C6—C1—C7	121.16 (13)	C1—C2—H2	120.00
C2—C1—C6	119.40 (15)	С3—С2—Н2	120.00
C2—C1—C7	119.26 (14)	С2—С3—Н3	120.00
C1—C2—C3	120.42 (16)	С4—С3—Н3	120.00
C2—C3—C4	120.11 (16)	C3—C4—H4	120.00
C3—C4—C5	119.94 (19)	С5—С4—Н4	120.00
C4—C5—C6	120.70 (19)	C4—C5—H5	120.00
C1—C6—C5	119.37 (15)	С6—С5—Н5	120.00
C1—C7—C8	120.05 (13)	С1—С6—Н6	120.00
O2—C7—C1	119.79 (12)	С5—С6—Н6	120.00
O2—C7—C8	120.03 (13)	C10-C11-H11	120.00
N1—C8—C9	115.27 (12)	C12—C11—H11	120.00
N1—C8—C7	124.70 (13)	С11—С12—Н12	120.00
C7—C8—C9	119.22 (12)	С13—С12—Н12	120.00
O1—C9—C10	120.77 (13)	С12—С13—Н13	120.00
01—C9—C8	117.34 (13)	C14—C13—H13	120.00
C8—C9—C10	121.80 (12)	C13—C14—H14	120.00
C9—C10—C15	122.53 (13)	C15—C14—H14	120.00
C11—C10—C15	118.90 (13)	С10—С15—Н15	120.00
C9—C10—C11	118.52 (12)	C14—C15—H15	120.00
C10-C11-C12	120.13 (15)	С16—С17—Н17	120.00
C11—C12—C13	120.64 (16)	C18—C17—H17	120.00
C12—C13—C14	119.77 (17)	С17—С18—Н18	119.00
C13—C14—C15	120.49 (16)	C19—C18—H18	119.00
C10-C15-C14	120.06 (14)	С19—С20—Н20	119.00
N2-C16-C21	118.19 (12)	С21—С20—Н20	119.00
C17—C16—C21	120.08 (13)	C16—C21—H21	120.00
N2-C16-C17	121.73 (13)	C20-C21-H21	120.00
C16—C17—C18	119.37 (14)	C22—C23—H23A	109.00
C17—C18—C19	121.70 (13)	С22—С23—Н23В	109.00
C18—C19—C20	117.83 (13)	С22—С23—Н23С	109.00
C20-C19-C22	119.22 (13)	H23A—C23—H23B	109.00
C18—C19—C22	122.94 (12)	H23A—C23—H23C	109.00
C19—C20—C21	121.41 (14)	H23B—C23—H23C	109.00
C8—N1—N2—C16	179.36 (13)	O1—C9—C10—C11	20.0 (2)
N2—N1—C8—C7	-3.8 (2)	C8—C9—C10—C11	-156.37 (15)
N2—N1—C8—C9	165.87 (13)	C8—C9—C10—C15	26.3 (2)
N1—N2—C16—C17	-6.4 (2)	C9—C10—C11—C12	-178.17 (16)
N1—N2—C16—C21	173.30 (13)	C11—C10—C15—C14	-0.4 (2)
C6—C1—C2—C3	-1.8 (2)	C15-C10-C11-C12	-0.8 (2)

С2—С1—С7—С8	-141.11 (14)	C9-C10-C15-C14	176.90 (16)
C6—C1—C7—O2	-132.20 (15)	C10-C11-C12-C13	1.4 (3)
C6—C1—C7—C8	43.78 (19)	C11—C12—C13—C14	-0.8 (3)
C7—C1—C2—C3	-176.99 (13)	C12—C13—C14—C15	-0.4 (3)
C2-C1-C6-C5	-0.3 (2)	C13—C14—C15—C10	1.0 (3)
C7—C1—C6—C5	174.80 (14)	N2-C16-C17-C18	178.04 (13)
C2—C1—C7—O2	42.92 (19)	C21—C16—C17—C18	-1.6 (2)
C1—C2—C3—C4	2.4 (2)	N2-C16-C21-C20	-179.48 (13)
C2—C3—C4—C5	-0.8 (3)	C17—C16—C21—C20	0.2 (2)
C3—C4—C5—C6	-1.3 (3)	C16—C17—C18—C19	1.8 (2)
C4—C5—C6—C1	1.8 (3)	C17—C18—C19—C20	-0.5 (2)
C1—C7—C8—C9	34.6 (2)	C17—C18—C19—C22	178.33 (14)
C1—C7—C8—N1	-156.14 (14)	C18—C19—C20—C21	-1.0 (2)
O2-C7-C8-N1	19.8 (2)	C22-C19-C20-C21	-179.85 (14)
O2—C7—C8—C9	-149.42 (14)	C18—C19—C22—O3	-175.13 (15)
N1-C8-C9-O1	-138.55 (15)	C18—C19—C22—C23	4.6 (2)
C7—C8—C9—C10	-151.87 (14)	C20—C19—C22—O3	3.7 (2)
C7—C8—C9—O1	31.7 (2)	C20—C19—C22—C23	-176.60 (14)
N1-C8-C9-C10	37.9 (2)	C19—C20—C21—C16	1.1 (2)
O1—C9—C10—C15	-157.37(16)		

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+2, -*y*+1, -*z*; (iii) -*x*+5/2, *y*+1/2, -*z*+1/2; (iv) *x*-1/2, -*y*+1/2, *z*-1/2; (v) -*x*+5/2, *y*-1/2, -*z*+1/2; (vi) -*x*+1, -*y*, -*z*; (vii) -*x*+3/2, *y*-1/2, -*z*+1/2; (viii) *x*-1/2, -*y*+1/2, *z*+1/2; (ix) *x*+1/2, -*y*+1/2, *z*+1/2; (x) -*x*+3/2, *y*+1/2, -*z*+1/2; (xi) *x*+1/2, -*y*+1/2, *z*-1/2; (x) -*x*+3/2, *y*+1/2, -*z*+1/2; (xi) -*x*+1/2, -*y*+1/2, *z*-1/2; (x) -*x*+3/2, *y*+1/2, -*z*+1/2; (xi) -*x*+1/2, -*y*+1/2, *z*+1/2; (x) -*x*+3/2, *y*+1/2, -*z*+1/2; (xi) -*x*+1/2, -*y*+1/2, *z*-1/2; (x) -*x*+3/2, *y*+1/2, -*z*+1/2; (xi) -*x*+1/2, -*y*+1/2, *z*-1/2; (x) -*x*+3/2, *y*+1/2, -*z*+1/2; (x) -*x*+1/2; (x) -*x*+1/2; (x) -*x*+3/2, -*y*+1/2, -*z*+1/2; (x) -*x*+1/2; (x) -

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H1…O2	0.888 (15)	1.965 (15)	2.6496 (16)	132.8 (15)
C15—H15…O3 ⁱⁱ	0.93	2.38	3.2503 (19)	156
C21—H21···O1 ⁱ	0.93	2.67	3.2983 (18)	125
Symmetry adday (ii) $w \mid 2$ $w \mid 1$ $-i$ (i) $w \mid 2$ w	_			

Symmetry codes: (ii) -x+2, -y+1, -z; (i) -x+2, -y, -z.

Fig. 3